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Abstract 

A necessary distinction is established between two 
kinds of long-period ordered structures: (1) periodic 
antiphases (PAP), whose principal characteristic feature 
is a continuous variation of antiphase half-period M 
as the composition changes; (2) 'ordinary '  long-period 
structures, which show, as the composition changes, a 
series of phases stable in small composition ranges, 
every phase displaying a different, but well-defined, 
crystallographic structure. It is shown, through 
electron diffraction studies, that the ordered Ag3Mg 
alloy belongs to the second kind, unlike standard PAP 
alloys such as AuCu, AuCu 3, Au3Cu, Cu3Pt and 
Cu3Pd. It is stressed that standard PAP structures can 
always be obtained by heating, above some transition 
temperature, a L 12 (or L 10) phase which always exists 
at lower temperature. This is not the case for ordered 
AgaMg. In this connection, the theory about 
stabilization of long-period structures is discussed [Sato 
& Toth (1965). Alloying Behaviour and Effects in 
Concentrated Solid Solutions, pp. 295-419. New 
York: Gordon & Breach]. 

Introduction 

A number of alloys (AuCu, AuCu 3, AuaCu , CuaPd , 
Au3Zn, AgaMg, CuaPt etc.) display, in some ranges of 
concentration and temperature, particular structures 
known as periodic antiphases (PAP): the high- 
temperature disordered phase - generally of the A 1 
type - transforms to a low-temperature PAP structure, 
in one or two dimensions. Sometimes, at a lower 
temperature, an ordered L12 (or L1 o in the case of 
AuCu) phase can be obtained which transforms itself 
into the PAP structure at a higher temperature. These 
experimental facts can be summarized by the transition 
scheme: 

0567-7394/79/010181-08501.00 

ordered L12 (or L10) ~ PAP --, disordered A 1, 

when the temperature rises. This transition series is now 
well established for AuCu (Johannson & Linde, 1936), 
AuCu 3 (Pianelli, 1959), Au3Cu (Gratias, Condat & 
Fayard, 1972), CuaPt (Ogawa, Iwasaki & Terada, 
1973) and CuaPd (Guymont & Gratias, 1976). 

The current literature does not make a clear 
distinction between such PAP structures and what we 
shall call 'ordinary' long-period structures. A PAP 
structure is one of the long-period structures, but PAP 
structures display characteristic features which enable 
them to be distinguished from among long-period 
structures. The clearest manner of discussing these 
characteristic features is to refer to the reciprocal space 
pattern as nearly displayed by electron diffraction. All 
alloys considered here are cubic in the A 1 disordered 
phase and keep an orthogonal Bravais cell after tran- 
sition: a,b,¢ the disordered cubic direct axes, and the 
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Fig. 1. Reciprocal plane (001)* for a PAP alloy. Only first- and 
second-order antiphase reflections are shown. 

© 1979 International Union of Crystallography 
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reciprocal axes a*,b*,c* have the same direction. All 
through this study, all patterns will refer to these axes. 
We restrict our considerations to the case of the mono- 
periodic antiphase, and, for a clear discussion, we shall 
consider a unique orientation of antiphase direction in 
our drawings - as well as in our experimental 
observations. 

The reciprocal plane (001)* is chosen with a* as the 
antiphase direction (Fig. 1): this drawing shows cell 
features common to all PAP alloys. The two antiphase 
reflections (or 'satellites') denoted st and fl in the centre 
of this reciprocal {2a*,2b*,2c*} cell have indices: st: 
1 -- (1/2M),  1, 0; fl: 1 + (1/2M),  1, 0. 

The distance a fl is therefore l/M, in units of the 
reciprocal cell. M is, as usual, the antiphase half-period, 
and also represents the length of the antiphase domains 
in units of a. 

Sometimes higher-order antiphase satellites are 
observed, the order being defined as 2n + 1 in the 
indices 1 + (2n + l)/2M, 1, 0; however these become 
weaker as the order increases. 

When concentration in the alloy is changed, the 
spacing between a and fl varies, while all spots remain 
fairly sharp, which means that the antiphase long period 
is rigorously defined, although M seems to take any, in 
particular incommensurable, values. 

This is the most striking characteristic feature of the 
PAP structure. For an ordinary structure, one can 
always choose a cell. This is not so in PAP structures: 
no cell can be chosen if M is not commensurable. Of 
course, 'giant' cells can be defined because the 
'irrationality' of M can always be approached as close 
as is wanted with a rational number. But we think that 
such a description is devoid of physical meaning. As a 
consequence of the lacking of a cell, any description of 
PAP structures using space groups is impossible. 

The proof of such an incommensurability has been 
given in AuCu II by X-ray studies on monocrystals 
(Jehanno & P~rio, 1964; Jehanno, 1965): antiphase 
satellites have been observed up to the 7th order along 
the row of spots X03 and seem to overlap without 
superposition with projections on this row of higher- 
order satellites coming from the neighbouring 313 
fundamental reflection. 

A second feature of PAP structures is that experi- 
mental intensities of successive orders of antiphase 
reflections decrease more rapidly with order n than is 
predicted by the 1/(2n + 1) 2 law.t As intensities are not 

]" There are other data about satellite intensities, but these do not 
seem to be characteristic of PAP. Antiphase satellites of the same 
order do not have the same intensity, this dissymmetry varying in a 
complex manner with composition, with the order of the reflection 
and also with X along the row of spots Xk0 considered. This also 
holds for 'satellites' of fundamental reflections: these can be due to 
multiple diffraction and/or modulation of atomic positions and/or 
modulation associated with the departure from stoichiometry 
(Ogawa, Watanabe, Watanabe & Komoda, 1958; Glossop & 
Pashley, 1959; Prrio & Tournarie, 1959b; Jehanno & Prrio, 1964). 

accurate in electron diffraction, which is the experi- 
mental tool used here, we shall not dwell any longer on 
this second feature. 

On the other hand, structures with giant cells are 
known to exist, for instance in so-called non- 
stoichiometric oxides: unlike PAP, they are 
characterized by a discontinuous series of phases stable 
in small concentration ranges. We shall see that Ag3Mg 
is another example of these latter structures. 

Stab~ity considerations 

When it was recognized that most PAP alloys were 
equilibrium phases (Schubert, Kiefer, Wilkens & 
Haufler, 1955), the question of their stability was 
considered, i.e. why does a PAP structure form from 
the disordered A 1 phase instead of the normal ordered 
(e.g. L 10 or L 1 z) phase? 

The current theory of the formation of PAP - as well 
as of any long period - is due to Sato & Totb (1965). 
Using reasoning quite similar to that which Jones once 
used to discuss the relative stability of hexagonal close- 
packed and face-centred cubic structures of metals, 
they deduce a lowering of the Fermi energy due to the 
lengthening of the period. This reasoning is implicitly 
done at absolute zero, so that the lowering of energy for 
the PAP implies: HpA p < nor d, if HpA P and Hor d denote 
the enthalpies of the PAP and of the normal ordered 
structure at 0 K. 

In fact, this is not substantiated by the behaviour of 
AuCu, AuCu 3, AuaCu, Cu3Pt and Cu3Pd, for which 
there exists a L12 (or L10 for AuCu) phase at low 
temperatures. Hence, if this latter phase is in equilib- 
rium, it can be stated that HpA P > nor d (Guymont & 
Gratias, 1976). 

All these alloys behave similarly when the con- 
centration is varied and the previous discussion of the 
Introduction applies to them: they are true PAP alloys. 

AgaMg is reported to undergo a transition: 

AgaMg (A 1) --, Ag3Mg (monoperiodic PAP) 

when the temperature is lowered in the range of 
composition from 20 to about 28 at.% Mg (Schubert, 
Kiefer, Wilkens & Haufler, 1955; Fujiwara, 
Hirabayashi, Watanabe & Ogawa, 1958). So far, no 
A 1 --, L 12 transition has been reported, which could well 
be for kinetic reasons. Our attempt to obtain a L 12 
phase for Ag3Mg was without any success, and a 
detailed study has led us to a re-evaluation of the 
structure. 

Experimental procedures 

(1) Ingot preparation 
The preparation of ingots of Ag3Mg of known 

composition is not an easy matter for two principal 
reasons: 
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(i) Mg is volatile: at 750°C its vapour pressure is 10 
mm Hg. 

(ii) Mg reduces silica (as it reduces most oxides). 
The only usual materials compatible with Mg at high 
temperatures are iron and graphite. The latter was 
preferred. 

Pure Ag and Mg in known proportions were intro- 
duced into a graphite crucible hung in a vertical oven 
under one atmosphere of argon circulated for two days 
on a Ti -Zr  alloy heated at 800°C. The ingot is then 
formed by heating at 960°C (melting temperature of 
pure Ag). At this temperature, the vapour pressure of 
Mg is about 200 mm Hg, resulting in an inevitable loss 
of Mg, and chemical analysis proved necessary. 

The ingot obtained was turned over and remelted 
under the same conditions, thus preventing any 
segregation due to gravity. The metallic brightness of 
the final ingot is a warrant of minimal oxidation. 

The ingots are rolled into thin strips about 0.1 mm 
thick and samples were cut from them. Several samples 
were then chemically analysed. 

(2) Quenching and annealing 

Samples were heated under one atmosphere of argon 
to 750°C for controlled times: 1, 5, 10 and 15 min. 
Thus the loss in Mg was gradual. Then, after 
quenching, several annealings were performed during 
times ranging from a few days to one month. Up to 
400 °C, annealing can be achieved in standard vacuum- 
sealed pyrex tubes. 

(3) Experimental observations 

Some of the annealed samples were used to make 
Debye-Scherrer diffraction patterns (Philips 114.6 mm 
diameter camera; Co K ,  radiation). Others were 
electrolytically thinned by the jet method using a 
Struers C~ bath, and observed in transmission electron 
microscopy (Philips EM 300 microscope, with tilting 
device, operated at 100 kV). 

(4) Alloy compositions 

Chemical analyses performed show significant 
changes in composition of the ingots after the second 
melting. Differences are smaller, of course, between 
samples before and after quenching. 

The accuracy of chemical analysis is not very high: 
not better than about 0.5 at.% Mg. 

Fujiwara, Hirabayashi, Watanabe & Ogawa (1958) 
have published a plot of the crystal parameter of 
disordered (~-Ag3Mg against concentration. We have 
also used this curve to check our alloy concentrations. 
But the accuracy of this plot is poor and we have no 
reason to trust these measures of concentration more 
than ours. 

The compositions of our samples were: 25, 24, 23.5 
and 22 at.% Mg. 

Reported ordered structure of  Ag3Mg 

From 20 to about 22 at.% Mg, the antiphase half- 
period M -- 2 is constant. The structure is then of the 
DO23 type (Fujiwara, Hirabayashi, Watanabe & 
Ogawa, 1958; Vanderschaeve, 1969) (Figs. 2 and 3). 
From X-ray experiments, some authors assume the 
DO23 structure in the whole range of composition 20-  
28 at.% Mg (Gangulee & Bever, 1968). Other studies, 
using X-ray powder diffraction (Schubert, Kiefer, 
Wilkens & Haufler, 1955) or electron diffraction on 
evaporated thin-film specimens (Fujiwara, 
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Fig. 2. The DO23 structure. 
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Fig. 3. (a) Diffraction pattern of an Ag-22 at.% Mg alloy 
quenched from 750°C and annealed at 320°C for 3 d: DO2~ 
structure. All spots are equispaced. (b) Corresponding drawing. 
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Hirabayashi, Watanabe & Ogawa, 1958) or on bulk 
samples (Hahni, M/iki & Paalassalo, 1971)conclude 
that M decreases continuously from 2 to about 1.67 
when the concentration varies from 22 to 28 at.% Mg. 
Usually, M is estimated from the spacing of the 
strongest satellite pair identified with the first-order 
antiphase reflections st and ft. Indeed, the first measure- 
ments of M were carried out on X-ray powder patterns 
(Schubert, Kiefer, Wilkens & Haufler, 1955): it is 
unlikely that any but the strongest satellites were 
observed. Such a determination of M from powder 
patterns is much less accurate than the measurement 
carried out on electron diffraction patterns - or, 
equivalently, on X-ray diffraction patterns from mono- 
crystals - where whole reciprocal planes are seen. All 
published electron diffraction patterns show two or 
three orientations for the antiphase direction, which 
does not help with the analysis. 

The structure of Ag3Mg between 22 and 28 at.% Mg 
is analysed by these authors (Fujiwara, Hirabayashi, 
Watanabe & Ogawa, 1958; Hahni, M/iki & Paalassalo, 
1971) in terms of Fujiwara's model for PAP structures 
(Fujiwara, 1957). The continuously varying half-period 
M is accounted for by an average on antiphase 
domains of two different lengths (M = 1 and M = 2). 
This mixing must be uniform because only uniformity 
leads to sharp antiphase reflections, as these are 
actually observed. But the arrangement is not regular, 
otherwise M would not vary continuously: some 
disorder exists in the juxtaposition along a (chosen as 
the antiphase direction) of antiphase domains M = 1 
and M =  2. Nevertheless, antiphase boundaries are 
well-defined planes, as is assumed in all models 
devised by Fujiwara for PAP structures (Fujiwara, 
1957). This results in a mean value h~/ computed as - 

follows: M = ( n l M  l + n2M2)/(n  I + n2), n I and n 2 
being the number of domains of length M~ and M 2. Any 
observed value of M can thus be accounted for. 
Finally, no exact arrangement is proposed, except of 
course, for 3~/= 2. 

Prrio & Tournarie's (1959a) model allows irrational 
values for M without referring to any mixing of integral 
cells and leads to the same values for calculated 
amplitudes. 

Our conclusions are different: experimental results 
are quite well accounted for by Fujiwara's model of a 
'regular arrangement with uniform mixing.' 

R e s u l t s  

Our first experimental result is negative: we have never 
been able to obtain an ordered L 12 phase. 

Compositions between 20 and 22 at.% Mg give 
electron diffraction patterns such as the one represented 
on Fig. 3: it agrees well with the defined structure DO23, 
which is an ordinary long-period structure of space 
group 14 /mmm.  

For compositions inside the range 22-26 at.% Mg 
and at several annealing temperatures, one observes the 
diffraction patterns given in Figs. 4, 5 and 6. These 
diffraction patterns are insensitive to the annealing 
temperature - at least for temperatures not greater than 
the disordering temperatures. 

Fig. 7 is a dark-field micrograph corresponding to 
the pattern of Fig. 4 (25 at.% Mg, annealed at 345 °C 
for two days): the fringe structure along [100] is well 
developed. By comparison with a compound of known 
long period, we obtain an interfringe distance of 28/k. 

Turning to a close examination of the three diffrac- 
tion patterns (Figs. 4, 5 and 6) we see that they corre- 
spond to three different structures. When compared to 
the standard diffraction pattern of any (monoperiodic) 
PAP alloy (Fig. 1), the main difference between Ag3Mg 
and standard PAP (e.g. AuCu 3) patterns is the weaker 
spots inside the main 'satellites'. This contrasts with the 
monotonic variation in 1/(2n + 1) 2 . The three 
reciprocal rows of spots X10 are represented separately 
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Fig. 4. Diffraction pattern of an Ag3Mg alloy of about 25 at.% Mg 
quenched from 750°C and annealed at 345 °C for 2 d. 
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Fig. 5. Diffraction pattern of an Ag3Mg alloy of about 24 at.% Mg 
quenched from 750°C and annealed at 332°C for 3 d. 
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Fig. 6. Diffraction pattern of an Ag3Mg alloy of about 23.5 at.% 
Mg quenched from 750°C and annealed at 250°C for 3 d. 
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for clarity (Fig. 8) where the spots are indexed in units 
of the reciprocal disordered cell. Further, we note: 

(i) All spots are regularly spaced at submultiples of 
a*. Therefore we can always choose a cell which retains 
b and e of the disordered cell and with a multiple of a in 
the third direction. 

(ii) Superlattice spots 1 k0 with k even are not split in 
all three diffraction patterns (Figs. 4, 5 and 6). This 
implies that only (b + e)/2 shifts are allowed. Hence, 
the splittings being along a* (see i), the antiphase vector 
is inside the antiphase plane (antiphase vector of the 
first kind). 

(iii) For the row of spots X I 0  corresponding to the 
pattern of Fig. 4 (Fig. 8a) there is one spot 010 and the 
period is a*/7 with a spot at each step. The period 

Fig. 7. Dark-f ield m i c r o g r a p h  c o r r e s p o n d i n g  to d i f f rac t ion pa t te rn  
o f  Fig. 4 (25 a t .% M g  sample) ,  ln ter f r inge  d i s tance :  2 8 / k .  
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Fig. 8. The  three rec iproca l  rows  a,  b and  e o f  reflect ions X I O  
c o r r e s p o n d i n g  to  the three d i f f rac t ion pa t te rns  o f  Figs.  4, 5 and  6. 

length is therefore seven disordered cells along the a 
axis. We thus have no lattice extinction and the Bravais 
lattice is P. 

For the rows of spots X10 corresponding to the 
patterns of Figs. 5 and 6 (see Fig. 8b and c) there is no 
spot of indices 010: the first spot is ~,1,0 for the row 
(b), hence a period of 18 disordered cells, but with a 
lattice extinction: no spot n/18,1,0 with n even. This 
leads to an I Bravais lattice. The same scheme applied 
to the row (c) also gives an I Bravais lattice and a period 
of 26 disordered cells along the a axis. This is also true 
for the DO23 structure (Fig. 3): here we obtain an I 
Bravais lattice with a period of four disordered cells 
along the a axis. 

Any model suitable for the description of PAP 
structures is able to explain all these observed struc- 
tures (Fujiwara, 1957; P6rio & Tournarie, 1959a; 
Jehanno & P6rio, 1964; Jehanno, 1965): all the weak 
spots observed between tt and ~ first-order antiphase 
reflections are obtained as a superposition of successive 
higher-order antiphase reflections, which enhances the 
intensity of these spots, whilst in standard PAP 
diffraction patterns higher-order antiphase reflections 
vanish rapidly with the order: there is no enhancement 
by superposition of still higher-order antiphase spots. In 
other words, for PAP structures such as AuCu, AuCu 3, 
Cu3Pd etc. we obtain an enumerable infinity of 
reflections in each reciprocal cell, whilst retaining the 
general aspect of the pattern: no spot will 'fall' on 
another spot whatever its order may be (P6rio & 
Tournarie, 1959a). We think that in the case of Ag3Mg, 
the antiphase half-period M does not vary con- 
tinuously, because we have never obtained a diffraction 
pattern similar to that of standard PAP, but on the 
contrary, all patterns obtained can be explained by an 
ordinary, reasonable supercell. 

We shall now discuss a model describing these 
structures. 

Model proposed for ordered Ag3Mg 

As it seems that we obtain ordinary long-period 
structures, i.e. with a long period along the a axis which 
is an integral multiple of a, we have tried to build 
periodic stackings of L 12 units {a,b,c} along a (Fig. 9a) 
some of these units being shifted by (b + c)/2 (Fig. 9b) 
with respect to the first unit. These units are identical to 
those chosen by Fujiwara (1957). The geometrical 
structure factor of the right cell in Fig. 9 will be 
affected by a phase factor exp{2n i [ (k  + l)/2]} with 
respect to the left cell, due to the antiphase vector, 
which turns out to be + 1 along the row of spots X10, 
so that the stacking along a can be represented as a 
sequence of + 1 and - 1 .  This is similar to Zhdanov's 
notation for close-packed structures. For instance, the 

_ _  

DO23 structure will be denoted 1111 or, more simply, 
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22: from left to right we first encounter two negative 
units (2), then two positive units (2). Of course, it is 
immaterial if we begin with a negative unit or with a 
positive one: 22 describes exactly the same structure. 

Assuming kinematic theory (as usual), and the factor 
(fMg -- fag) being factorized for normalization, even a 
crude evaluation of the intensities of spots X10 
eliminates a great number of a priori possible models 
by using the known properties of the Patterson function. 
The Patterson, or self-correlation function, i.e. the 
Fourier transform of intensities I(hj, kj, lj) 

P(x ,y ,z )= ~ I(hjkjlj) exp[2~/(hjx + kjy  + ljz)], 
J 

gives information on the first, second, third etc. 
neighbours. Here we are interested in the self- 
correlation of N L 12 cells along the a direction. So we 
consider 

e(x,0,0) = ~ , I (X lO)exp{2n ixX} ,  (0 < x  < N - -  1). 

Also, we know a priori that normalized P(0,0,0) = sum 
of the products (+ 1)(+ 1) and ( -1 ) ( - -1 )  and thus: 
P(0,0,0) = N. 

Let us take for instance the case of the pattern of Fig. 
4. The period is 7a so that N = 7. We measure approxi- 
mately the intensities of the X10 spots by the square of 
the spot diameters, and find: 

X l 0 :  010 ¢10 210 310 410 ~10 ~10 

intensities: 1 3 18 2 2 18 3 

We obtain: 

P(0,0,0) = 47 (= the sum of all intensities without the 
exp factor) 

2~i 4zci 6~/ 
P(1,0,0) = 1 + 3 exp ---if- + 18 exp ---if-- + 2 exp 7 

8z~i 10m 
+ 2 exp ---if-- + 18 exp 7 

12zti 
+ 3 exp - - 6 .87 .  

7 

cl 
a 

(a) (b) 
• Ag 

0 .M~ 
Fig. 9. (a) Unit cell of positive type (denoted: 1). (b) Unit cell of 

negative type (denoted: i): antiphase vector: (b + e)/2. 

But as N = 7, we can normalize P(0,0,0) to 7. All 
values of the Patterson function must be odd integers 
because N is odd: ( f M g -  fag) being factorized, we 
have a sum of N products each of them being - 1  or 
+ 1, and after cancellation of an obviously even number 
of them, the result is odd. With P(0,0,0) = 7, we obtain 
for P (1,0,0): 

P(1,0,0) = - - 1 . 0 2  ~ --1. 

This means that among seven first neighbours, we 
obtain an excess of one dissimilar first neighbour, i.e. 
we have three similar first neighbours and four 
dissimilar first neighbours. 

After the same calculation and normalization on 
P (2,0,0), we obtain: 

P(2,0,0) = - 4 . 5 1  ~ - 5 .  

We thus have only one similar second neighbour and 
six dissimilar second neighbours. 

In the instance considered, the knowledge of P_(1,0,0) 
and of P(2,0,0) is sufficient: the structure is 1111111, 
or in Zhdanov's notation: 222i.  No other structure 
with a length of 7 is possible. Note that we have not 
used the fact that 1.6 < M < 2. For 35I we find: 

3 x 2 + 1  7 
M -  = - = 1 . 7 5 .  

4 4 

The smallest distance between visible spots X10 will 
correspond to the 'fundamental' (= largest) interfringe 
seen when imaging through an objective aperture: the 
parameter of the disordered cell being about 4 A, we 
get for the 2221 structure 4 x 7 =  28 A, which is 
actually observed (Fig. 7). 

For the structure corresponding to Fig. 5, the total 
number of units stacked along a is 18. But as the 
Bravais lattice is I we must first have a certain arrange- 
ment of 9 L 12 units and then the symmetrical_arrange- 
ment 9. Here we find the arrangement 2222122221, 

- 

with M = ~=as 1.80. Other structures are eliminated by 
comparison of calculated 35/with measured h~/. 

For the structure corresponding to Fig. 6, the same 
reasoning_leads to an I Bravais lattice and an arrange- 
ment 22222212222221 with M = ~ = 1.86. 

Our results are collected in Table 1. The kinematic 
intensities calculated from these models, in units of (fMs 
- fAg), are collected in Table 2 for spots X10, and are 
in good agreement with observed intensities. We have 
recently obtained high-resolution images of structures 
M = ~ and M = ~,18 which definitely prove the correct- 
ness of our model. These images will be published in 
this journal in a subsequent paper. 

The two diffraction patterns already published_by 
Hanhi, M~iki & Paalassalo (1971) correspond to M = 

- 

18 for their Fig. 3 and M = 26 for their Fig. 5. Of course, 1-6 
their patterns show the three equivalent orientation 
domains. 
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Table 1. Structures o f  the different ordered AgaMg 
phases 

Structures Length 
(Zhdanov's (in units 

symbol) of a) 

22122i I0 

222i 7 

~ = ~ =  
1-67 

~= 1.75 

222212222i 18 ~ = ~ =  
1.80 

22222 i 11 

22222212222221 26 

22 4 2 

~ =  1.83 

2 6 _ _  

1-86 

Remarks 

Observed (Vanderschaeve, 
1978) 

I4/mmm 
Observed (Fig. 4) 
25 at.% Mg 
P4/mmm 
Largest interfringe = 28 tt, 
(Fig. 7) 
Observed (Fig. 5) 
24 at. % Mg 
I4/mmm 
Not observed 
P4/mmm 
Observed (Fig. 6) 
23.5 at.% Mg 
I4/mmm 
Largest interfringe = 52 
(Fig. 8 in paper by 

Hahni, M~iki & 
Paalassalo, 1971) 

Observed (Fig. 3) 
22 at.% Mg 
I4/mmm (DO23) 

Conelusions 

Contrary to the ease of standard PAP structures, such 
as AuCu, AuaCu, CuaPd , etc., the Ag3Mg alloy shows 
a discontinuous series of long-period ordered phases, 
stable in small concentration ranges, the latter becom- 
ing smaller and smaller as we approach concentrations 
corresponding to M = 2 (about 22 at.% Mg). 

The fact that no L 1 z phase seems to exist in AgaMg 
may well be correlated to the fact that it is not a PAP 
structure, and so our criticism of Sato & Toth's theory 
is still valid (Guymont & Gratias, 1976). 

Finally, the term PAP could be reserved for 
structures which exhibit those characteristic features 
discussed in the Introduction. With this convention, 
ordered Ag3Mg would no longer be described as a PAP 
structure, and would be placed among these regular 
long-period structures whose long period depends on 
composition, as is the case for Magn6li or Wadsley 
phases such as niobium oxides (see e.g. Iijima, Kimura 
& Goto, 1974) or perovskite-like compounds (see e.g. 
Portier, Carpy, Fayard & Galy, 1975). 

We are indebted to Professor P. P6rio for a number 
of corrections and many useful discussions. 

Table 2. Calculated intensities f o r  the three models 
corresponding to i l l  = ~, i~1 = ~, and i l l  = ~ f o r  spots 

X10 

25 at. % Mg 24 at. % Mg 23.5 at. % Mg 
- 

M=~ M--~ 1(,1=~- 

X, 1, 0 Intensities X, 1, 0 Intensities X, 1, 0 
~, l ,0  2.6 ~8, 1, 0 5 ~ ,1 ,0  
2, 1,0 20 ~, 1,0 16 ~, 1,0 
3, 1,0 1.2 ~, 1,0 132 ~, 1,0 
~,1,0 1.2 ~ ,1 ,0  7 ~ ,1 ,0  
~. 1.0 20 ~, 1,0 4 ~, 1,0 
6,1,0 2-6 ~,ll 1,0 7 ~ ,1 ,0  
~,1,0 1 13 1,0 132 13 1,0 x--~, 2-~, 

~,15 l, 0 16 ~,z5 l, 0 
17 1,0 5 ~, 1,0 i--~, 

~ ,1 ,0  
~ ,1 ,0  
23 1,0 7g, 
~ ,1 ,0  

Vanderschaeve (1978) has communicated to us a 
photograph of a diffraction pattern of the structure 
221221 with M = ~ = 1.67. It comes from a 26.5 at.% 
Mg sample annealed at 370 ° C for 4 d. 

As the Mg concentration decreases, there is an 
increasing proportion of cells of type 2, and the long 
period increases more and more until finally the cells of 
type 1 completely disappear and we are left with only 
22 (DO23) for compositions of about 22 at.% Mg. 
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Miigliche Kristallstrukturen Vfir oktaedrisehe Molekiile M X  6 

bei dichtester Packung der X-Atome 

VON ULRICH MiJLLER 

Fachbereich Chemie der Universitdt Marburg, Lahnberge, D-3550 Marburg, Bundesrepublik Deutschland 

(Eingegangen am 23. Februar 1978; angenommen am 8. August 1978) 

Abstract 

As long as there is no thermally induced disorder, 
octahedral M X  6 molecules crystallize with a close- 
packed arrangement of X atoms in which one sixth of 
the octahedral holes are occupied by M atoms. On 
consideration of the symmetry restrictions imposed by 
the partial occupation of the octahedral holes, the 
possible space groups and structures are deduced with 
the 9id of group--subgroup relationships. Centro- 
symmetric space groups that can be achieved include: 
(1) all trigonal, rhombohedral and monoclinic space 
groups, Pnmn, Pnma, Pnab and P1 for hexagonal close 
packing of the X atoms; (2) Pcmn and Pcab for the 
double-hexagonal close packing; (3_) Fddd, Bbmb, all 
monoclinic space groups and P1 for cubic close 
packing. The most important molecular arrangements 
are illustrated and their expected cell dimensions are 
given. The known structures of WC16, UCI 6 and 
numerous hexafluorides correspond to some of the pre- 
dicted possibilities. 

Das von B/irnighausen (1975) entwickelte Konzept zur 
systematischen Beschreibung von Kristallstrukturver- 
wandtschaften mit Hilfe der kristallographischen 
Gruppe-Untergruppe-Beziehungen (Billiet, Sayari & 
Zarrouk, 1978; Neubiiser & Wondratschek, 1966, 
1969) kann auch dazu herangezogen werden, um 
vorauszusagen, welche Raumgruppen m6glich sind, 
wenn eine gegebene Verbindung unter Einhaltung 
bestimmter Randbedingungen kristallisieren soil. Ffir 
die m6glichen Raumgruppen lassen sich Struktur- 
modelle angeben und Erwartungswerte fiir die Gitter- 
konstanten berechnen. Sind von einer Verbindung die 
Gitterkonstanten bekannt, so kann durch Vergleich mit 
den Erwartungswerten ihre wahrscheinliche Kristall- 
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struktur vorausgesagt werden. In einer vorange- 
gangenen Arbeit (MfiUer, 1978a) waren so Struktur- 
m6glichkeiten ffir dimere Pentahalogenide abgeleitet 
worden. Nachfolgend werden analoge Uberlegungen fiir 
die Kristallstrukturen oktaedrischer Molekiil- 
verbindungen M S  6 angestellt. 

Randbedingungen 

Es sei vorausgesetzt, dass MX6-Molekfile unter 
Einhaltung der folgenden Randbedingungen kristal- 
lisieren: 

(1) Die X-Atome sollen eine hexagonal-, doppelt- 
hexagonal- oder kubisch-dichteste Kugelpackung 
annehmen. 

(2) Ein Sechstel der Oktaederliicken dieser Packung 
soil durch M-Atome besetzt werden. 

(3) Damit ein Molekfilgitter entsteht, miissen die 
Liicken aller Nachbaroktaeder um ein besetztes 
Oktaeder frei bleiben. 

(4) Die Betrachtung sei auf zentrosymmetrische 
Raumgruppen beschr/inkt. Diese Einschr/inkung wird 
durch die Erfahrung gerechtfertigt, dass zentro- 
symmetrische Molekfile nur in seltenen Ausnahme- 
fiillen in nicht-zentrosymmetrischen Raumgruppen 
kristallisieren (die bekannten Ausnahmef'~ille bes- 
chr/inken sich ausserdem auf Molekiile der Punkt- 
symmetrie 2/m; MfiUer, 1978b). 

Die Randbedingungen lassen ffir die Molekiile nur 
bestimmte Orientierungsm6glichkeiten zu und bedingen, 
dass bestimmte Symmetrieelemente der Kugelpackung 
verloren gehen. Die realisierbaren Raumgruppen 
ergeben sich dann, wenn man von allen Untergruppen 
der Kugelpackungsraumgruppe diejenigen streicht, 
welche nicht erhaltbare Symmetrieelemente besitzen. 
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